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1. Introduction  

The Bureau of Meteorology routinely makes dynamical seasonal predictions 

out to 9 month lead time with the POAMA coupled ocean-atmosphere forecast 

system. The main focus for POAMA-1 is the prediction of sea surface temperature 

(SST) anomalies associated with El Niño / La Niña, for which POAMA’s predictions 

are internationally competitive. El Niño/Southern Oscillation (ENSO) is the dominant 

driver of Australian climate variability, thus POAMA’s forecasts have great value for 

anticipating the behavior of El Niño. 

Although the primary focus to date has been on prediction of El Niño, 

POAMA does provide predictions of regional climate. There has been little use of the 

regional climate forecasts from POAMA1 due to a number of model limitations. For 

instance, the atmospheric model in POAMA is run at relatively low horizontal 

resolution such that regional rainfall variability around Australia is not well resolved. 

And, the mean climate from the POAMA model drifts, thus hindering the use of direct 

prediction of regional climate at longer lead times.  Nonetheless, an assessment of 

POAMA’s ability to simulate the major modes of climate variability that are relevant 
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to Australian climate is in order.  This assessment is required to provide a benchmark 

for future improvements of the forecast systems, such as that anticipated by 

development of the ACCESS system (e.g., improved spatial resolution, improved 

physical parameterizations, and reduced model drift). This assessment is also required 

because the utility of the forecasts from the current version of POAMA is unknown. 

There is also scope for bridging and downscaling of the forecasts, which is founded 

on the notion that important climate drivers (primarily ENSO teleconnections) are 

predicted. This report summarizes an initial assessment of the prediction/simulation 

by POAMA 1.5b of the major drivers of Australian rainfall variability. The focus is 

not only on ENSO but also on other tropical sea surface temperature variations such 

as those in the equatorial eastern Indian Ocean that are important for SE Australian 

rainfall. We will also assess the impact of model drift on these relationships, which 

should aide future development of the POAMA system.  

2. Hindcasts and mean state bias 

The analysis here is based on a 3 member ensemble of 9-month forecasts for the 

period 1982-2006. Forecasts are initialized from observed atmospheric and ocean 

initial states. The atmospheric initial state, together with the land surface condition, is 

produced by the ALI system. The ocean initial condition is provided by the ocean 

initialization system that piggybacks on the POAMA system. Forecasts are initialized 

on the first of each month. Three forecasts are made each month from slightly 

different atmospheric initial conditions but with identical oceanic initial conditions.  

Forecast anomalies are formed relative to the forecast model mean state, which is a 

function of start month and lead-time. In this fashion, the mean model bias is 

removed. A critical issue, however, is whether the bias then affects the variability 

(which is what we are trying to predict). The simulated mean rainfall for the DJF and 

JJA seasons, as a function of forecast lead-time, is displayed in Figures 1 and 2. The 

overall pattern of predicted rainfall is realistic, but much too weak. However, there is 

very little evidence of model drift: the mean rainfall is equally poor (or good, 

depending on your perspective) for all lead times. But, as will be shown below, model 

drift affects the structure of the ENSO mode and its teleconnection to Australia, hence 
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simply removing the bias after the fact is no substitute for reduction of the bias. 

Reduction of the mean climate bias is a primary focus of the ongoing improvement of 

the POAMA system.  

3. Simulation of major modes of SST variability 

We first assess POAMA’s ability to simulate the major modes of SST variability that 

are relevant to Australian climate variability. Foremost is ENSO. Recently, Wang and 

Hendon (2007) emphasized that the eastern Australia rainfall is equally sensitive to 

the “inter-El Niño” variations of SST, which are the east-west shifts of SST anomalies 

in the central Pacific between different El Niño/La Niña events. These shifts are well 

captured by the second leading EOF of SST variability. The structures of the first 2 

EOFs of SST from the hindcasts that verify in DJF are displayed in Fig. 3. The results 

for DJF are typical of the other seasons. At lead time 0, the spatial pattern of the EOFs 

is nearly identical to the observed patterns (reflected by the strong pattern correlations 

with observed in Table 1).  At longer lead-times, some important drift in the leading 

EOF (the “ENSO” mode) is seen. The major drift is the extension of the warm 

anomaly associated with the El Niño all the way across the Pacific into Indonesia. 

This stems from the drift in the mean SST (not shown), whereby the cold tongue of 

SST erroneoulsy extends across the Pacific at longer lead-time. Nonetheless, both 

EOF 1 and 2 retain some realism out to at least lead time 6 (Table 1).  

The skill for prediction of the temporal variation of these leading modes of SST is 

assessed by the correlation of the predicted and observed principal components (Table 

1). In general, EOF 1 (the ENSO mode) is predictable out to at least 6 months, while 

EOF 2 is predictable for about 4-5 months, as indicated by a correlation greater than 

0.5. An alternate way to assess the skill of prediction of the leading modes of SST 

variability is to assess skill of the projections of POAMA SST onto the observed 

EOFs of SST (Table 2). It is now seen that POAMA can skilfully predict the observed 

behavior of EOF 1 and 2 out to at least 6 months for all seasons. EOF 3 is generally 

predictable for about 4 months. The overall conclusion, then, is that POAMA can 

skilfully predict the patterns of tropical SST variability that are important for 

Australian climate with lead time out to about 6 months. 
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4. Simulation of the major drivers of rainfall variability 

We now assess POAMA’s ability to simulate the teleconnection between the leading 

modes of tropical SST variability and Australian rainfall. As discussed above, 

Australian rainfall is sensitive not only to the dominant ENSO mode of SST 

variability, but also to the east-west variations of tropical SST about El Niño. This is 

demonstrated in Figs. 4 and 5 (center panels), which show the correlation of observed 

rainfall with the observed EOFs 1 and 2 of tropical SST for the winter (JJA) season. 

Correlations are generally negative with both EOFs across eastern Australia (warm 

SST in the central Pacific is associated with reduced rainfall in eastern Australia). 

But, rainfall in parts of central eastern Australia is more sensitive to EOF2 than EOF1. 

In spring (Fig. 6 and 7), a similar relationship is seen, but now EOF1 is more 

dominant than EOF 2 in the east. 

POAMA’s ability to simulate these relationships is shown in the panels around the 

perimeter of these figures, as a function of forecast leadtime. The impact of model 

drift on the relationship with EOF 1 is stunning. For instance in JJA (Fig. 4), POAMA 

does a modestly good job representing the negative relationship on the east coast at 

short lead time (ie. reduced rainfall during El Niño). But, at longer lead-time, 

POAMA simulates exactly the wrong response (enhanced rainfall in the SE during El 

Niño). Similarly in SON (Fig. 6) POAMA under represents the negative relationship 

at short lead time, and then over does the negative relationship at long lead time. 

Similarly in DJF (Fig. 8), POAMA does a good job at short lead time, and then over 

represents the reduction of rainfall during ENSO at long lead time. Drift seems to be 

less of an issue for EOF2. Overall, then,  the current version of POAMA appears to do 

a credible job of simulating the rainfall teleconnections associated with the main 

modes of SST variability at short lead time, but model drift appears to hinder this 

simulation at longer lead times.  

The behavior for simulation of rainfall in the SEACI region (38.5°-33.5°S, 137.5°-152.5°E) is 

shown in Figs. 9-11. The correlation between the predicted rainfall in the SEACI region and 

predicted SST is shown as a function of lead time. For JJA (Fig. 9), POAMA exhibits realistic 

sensitivity at short lead time (wet when central Pacific is cold and the seas around Australia 
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are warm) but at longer lead time the simulated sensitivity changes sign. For SON (Fig. 10) 

the SST pattern is realistic at all lead times (wet during La Niña), but at long lead time, the 

relationship is much too strong. For summer (DJF Fig. 11), POAMA also couples SEACI 

rainfall too strongly to ENSO. These relationships are summarized in Tables 3 and 4, which 

show the correlations between predicted Australian-mean rainfall and predicted SST EOFs. 

The observed relationships are also provided for reference.  

5. Conclusions and recommendations 

POAMA has skill in predicting tropical SST variations that are important for Australian 

climate. This includes not only skill in predicting ENSO, but also extends to the important 

east-west variation of equatorial Pacific SST of individual ENSO events. Eastern Australian 

rainfall, especially in winter and spring, is sensitive to these east-west variations of SST, 

hence, POAMA appears to have important predictive capability beyond simply that of the 

occurrence of El Niño.  

 POAMA also realistically simulates rainfall teleconnections to Australia driven by 

ENSO and the inter-ENSO variations of SST. However model drift appears to 

degrade the realism of these teleconnections at longer lead times. There also appears 

to be an issue with spin up-, whereby the teleconnection is initially too weak, but then 

strengthens to realistic magnitudes 1-3 months into the forecast. These results imply 

that the model drift needs to be remedied and that initialization needs to be 

scrutinized. One way to alleviate model drift is to “flux correct” in order to maintain a 

realistic base state. Flux correction should be considered for future versions of 

POAMA. Improvements to the ocean initialization system are underway, which might 

remedy some if the apparent initialization shock (spin up) that has been diagnosed 

here. The impact of the new ocean initialization will be assessed in the coming year as 

the system becomes available. However, the best approach in the future will be to 

develop a truly coupled initialization system, whereby the ocean, land surface, and 

atmosphere are initialized in unison. Support for such a system should be considered 

in subsequent programs of SEACI. 

In conclusion, this analysis provides optimism for future direct utilization of regional 

climate forecasts from POAMA. In the meantime, these results provide 

encouragement for development of hybrid statistical-dynamical forecast schemes, 
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whereby predictable components of the  climate from POAMA that are relevant for 

regional Australian climate  are exploited by statistical techniques to deliver useful 

regional predictions. 

. DJF 
spatial 

LT0 LT1 LT2 LT3 LT4 LT5 LT6 

EOF1 0.95 0.93 0.93 0.91 0.91 0.91 0.91 
EOF2 0.89 0.79 0.72 0.71 0.71 0.77 0.61 
EOF3 0.64 0.58 0.64 0.51 0.61 0.32 0.65 
 
DJF 
temporal 

LT0 LT1 LT2 LT3 LT4 LT5 LT6 

PC1 0.96 0.90 0.88 0.89 0.80 0.78 0.71 
PC2 0.88 0.75 0.63 0.66 0.58 0.70 0.45 
PC3 0.75 0.41 0.53 0.55 0.45 0.32 0.23 
 
MAM 
spatial 

LT0 LT1 LT2 LT3 LT4 LT5 LT6 

EOF1 0.93 0.87 0.85 0.84 0.83 0.84 0.84 
EOF2 0.86 0.79 0.76 0.73 0.70 0.56 0.56 
EOF3 0.66 0.46 0.36 0.41 0.34 0.19 0.38 
 
MAM 
temporal 

LT0 LT1 LT2 LT3 LT4 LT5 LT6 

PC1 0.93 0.92 0.81 0.77 0.71 0.70 0.70 
PC2 0.93 0.88 0.74 0.72 0.64 0.53 0.66 
PC3 0.60 0.76 0.42 0.61 0.41 0.41 0.44 
 
JJA spatial LT0 LT1 LT2 LT3 LT4 LT5 LT6 
EOF1 0.91 0.87 0.88 0.84 0.82 0.81 0.79 
EOF2 0.78 0.83 0.68 0.68 0.72 0.65 0.58 
EOF3 0.09 0.02 0.12 0.26 0.24 0.38 0.11 
 
JJA 
temporal 

LT0 LT1 LT2 LT3 LT4 LT5 LT6 

PC1 0.88 0.83 0.71 0.69 0.71 0.51 0.50 
PC2 0.80 0.81 0.76 0.80 0.76 0.67 0.64 
PC3 0.25 0.01 0.12 0.33 0.45 0.53 0.44 
 
SON spatial LT0 LT1 LT2 LT3 LT4 LT5 LT6 
EOF1 0.92 0.88 0.86 0.87 0.87 0.89 0.87 
EOF2 0.79 0.74 0.67 0.60 0.48 0.56 0.46 
EOF3 0.47 0.32 0.34 0.25 0.43 0.38 0.12 
 
SON 
temporal 

LT0 LT1 LT2 LT3 LT4 LT5 LT6 

PC1 0.96 0.88 0.84 0.73 0.65 0.57 0.62 
PC2 0.82 0.81 0.80 0.70 0.50 0.53 0.43 
PC3 0.34 0.31 0.26 0.21 0.41 0.46 0.30 
 
Table 1. Top panel for each season is the spatial correlation of the leading 3 EOFs of SST from POAMA with that 
from observations, as a function of forecast leadtime. Bottom panel for each season is the temporal correlation of 
the predicted time variation of the leading 3 EOFS of SST from POAMA with that from observations. 
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DJF LT0 LT1 LT2 LT3 LT4 LT5 LT6 
PC1 0.96 0.91 0.89 0.90 0.82 0.80 0.73 
PC2 0.89 0.82 0.72 0.72 0.70 0.72 0.64 
PC3 0.71 0.61 0.68 0.62 0.67 0.60 0.40 

 

 

MAM LT0 LT1 LT2 LT3 LT4 LT5 LT6 
PC1 0.93 0.90 0.83 0.78 0.72 0.72 0.72 
PC2 0.94 0.88 0.83 0.80 0.69 0.70 0.73 
PC3 0.68 0.60 0.71 0.73 0.66 0.63 0.71 

 

 

JJA LT0 LT1 LT2 LT3 LT4 LT5 LT6 
PC1 0.90 0.84 0.71 0.67 0.71 0.54 0.52 
PC2 0.88 0.75 0.82 0.83 0.77 0.70 0.64 
PC3 0.70 0.66 0.57 0.52 0.34 0.44 0.54 

 

Table 2 Correlation between observed PCs and  projections of POAMA SST onto observed EOFs  

SON LT0 LT1 LT2 LT3 LT4 LT5 LT6 
PC1 0.97 0.89 0.86 0.75 0.67 0.58 0.61 
PC2 0.87 0.82 0.78 0.76 0.70 0.64 0.64 
PC3 0.59 0.62 0.56 0.44 0.59 0.42 0.37 
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JJA LT1 LT2 LT3 LT4 LT5 LT6 LT7 

PC1 0.13 0.22 0.59 0.51 0.73 0.26 0.28 

PC2 0.6 0.39 0.07 0.42 0.03 0.43 0.19 

PC3 0.09 0.01 0.1 0.09 0.09 0.09 0.50 

 

 

SON LT1 LT2 LT3 LT4 LT5 LT6 LT7 

PC1 0.17 0.53 0.54 0.65 0.57 0.44 0.43 

PC2 0.63 0.67 0.62 0.24 0.58 0.42 0.57 

PC3 0.21 0.02 0.13 0.22 0.05 0.31 0.03 

 

DJF LT1 LT2 LT3 LT4 LT5 LT6 LT7 

PC1 0.4 0.5 0.6 0.8 0.8 0.8 0.8 

PC2 0.4 0.4 0.4 0.1 0.1 0.3 0.3 

PC3 0.3 0.3 0.0 0.3 0.0 0.2 0.1 

 

 

Table 3 Correlation between predicted Australian-mean rainfall and principal components of leading 3 EOFs of 
POAMA SST, as a function of forecast leadtime.
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 PC1 PC2 PC3 
DJF -0.38 0.12 0.07 
MAM -0.08 -0.60 -0.27 
JJA -0.20 -0.24 0.12 
SON -0.47 -0.39 -0.03 
 

Table 4 Correlation of observed Australian-mean rainfall with observed EOFs of SST. 
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1

Fig. 1: Mean rainfall 
for DJF at lead time 0 
– 6 (anticlockwise 
from top left). 
Observed rainfall is in 
center.

Fig. 2:  Mean rainfall 
for JJA at lead time 
0 – 6 (anticlockwise 
from top left). 
Observed rainfall is 
in center.
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Fig. 3: Leading EOFs of SST from POAMA 
hindcasts for DJF, as a function of lead time.

Fig. 4: Correlation 
between rainfall and 
PC1 for JJA from  
POAMA hindcasts 
at lead time 0 to 6 
months 
(anticlockwise 
starting in upper 
left). Observed 
correlation is in 
center.



3

Fig. 5: Correlation 
between rainfall and 
PC2 in JJA from 
POAMA hindcasts 
at lead time 0 to 6 
months 
(anticlockwise 
starting in upper left) 
Observed 
correlation is in 
center.

Fig. 6: Correlation 
between rainfall and 
PC1 for SON from  
POAMA hindcasts 
at lead time 0 to 6 
months 
(anticlockwise 
starting in upper 
left). Observed 
correlation is in 
center.
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Fig. 7: Correlation 
between rainfall and 
PC2  for SON from  
POAMA hindcasts 
at lead time 0 to 6 
months 
(anticlockwise 
starting in upper 
left). Observed 
correlation is in 
center.

Fig. 8: Correlation 
between rainfall and 
PC1 for DJF from  
POAMA hindcasts 
at lead time 0 to 6 
months 
(anticlockwise 
starting in upper 
left). Observed 
correlation is in 
center
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Fig. 9 
Correlation 
SEACI-mean 
rainfall with SST 
for JJA season
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Fig. 10 
Correlation 
SEACI-mean 
rainfall with 
SST for SON 
season
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Fig. 11 
Correlation 
SEACI-mean 
rainfall with 
SST for the 
DJF season


